
SEMICOARSENING MULTIGRID ON DISTRIBUTED MEMORY

MACHINES

PETER N. BROWN , ROBERT D. FALGOUT AND JIM E. JONES�

Abstract. This paper presents the results of a scalability study for a three dimensional semi-
coarsening multigrid solver on a distributed memory computer. In particular, we are interested in the
scalability of the solver; how the solution time varies as both problem size and number of processors
are increased. For an iterative linear solver, scalability involves both algorithmic issues and imple-
mentation issues. We examine the scalability of the solver theoretically by constructing a simple
parallel model and experimentally by results obtained on a IBM SP. The results are compared with
those obtained for other solvers on the same computer.

1. Introduction. This paper focuses on our work in developing a parallel solver
for the linear systems arising from �nite di�erence, �nite volume, or �nite element
discretizations of the di�usion equation,

�r � (Dru) + �u = f;(1)

on logically rectangular grids. In Rn, the di�usion coeÆcientD is a symmetric positive
de�nite n � n matrix and � � 0. We restrict our attention to discretizations that
produce \nearest neighbor" stencils. In 2D, for example, the linear system can be
represented by a 9-point stencil at each grid point of the form

0
@ Anw An Ane

Aw Ac Ae

Asw As Ase

1
A :

In 3D, the stencil is 27-point. Applications where such a solver is needed include
radiation di�usion and ow in porous media. In these applications, the coeÆcients in
the problem are often anisotropic and discontinuous. Anisotropy may be present in
the PDE, i.e.

D =

�
D11 0
0 D22

�
; D11 � D22;

or may be caused by grids with unequal mesh sizes in the di�erent coordinate direc-
tions. The nature of the anisotropy can change within the domain, in some regions
we may have D11 � D22 and in others D22 � D11. The discontinuities in the coeÆ-
cients are typically due to material interfaces where the di�usion coeÆcient can jump
several orders of magnitude.

As we are interested in solving very large systems on massively parallel computers,
it is important that our solver be scalable, or very nearly so. Scalability can be de�ned
in various ways. In this paper we are concerned with how the solver performs as both
the size of the problem and the number of processors are increased. Let T (N;P) be
the time to solve a linear system with N unknowns on a computer using P processors.
The scaled eÆciency of a solver is de�ned as

E(N;P) � T (N; 1)=T (PN;P):(2)

� Center for Applied Scienti�c Computing, L-561, Lawrence Livermore National Laboratory, Liv-
ermore, California 94550.

1

One would like E(N;P) = 1. This would mean one could double the size of the
problem and the number of processors while keeping the solution time constant. For
our de�nition of scalability, we will require only that the scaled eÆciency be bounded
away from zero, i.e. a solver is scalable i�

9EN > 0 such that E(N;P) � EN for all P:(3)

In iterative methods for solving linear systems, solver scalability can be divided into
two aspects. The �rst is algorithmic scalability which requires that the computational
work per iteration is a linear function of problem size and that the convergence factor
per iteration is bounded below 1 with bound independent of problem size. The second
aspect is implementation scalability which requires that a single iteration is scalable on
the parallel computer. Both algorithmic and implementation scalability are required
for the iterative solver to be scalable.

For our problem, standard iterative methods like Jacobi, Gauss-Seidel or SOR
are not algorithmically scalable. The convergence factors of such methods approach
1 as problem size is increased. Multigrid methods can be algorithmically scalable,
but in our applications, special attention must be paid to the potential anisotropic
and discontinuous coeÆcients. Our multigrid algorithm is based on the work of Steve
Scha�er [11]. This algorithm's parallel performance has been investigated by other
authors on various parallel machines: Bandy, Dendy and Spangenberg [3] (2D and
3D results on the CM-5); Dendy, Ida and Rutledge[5] (2D results on the CM-2);
Smith and Weiser [12](2D results on the Intel iPSC/2 hypercube). Our work di�ers
from these previous studies in its emphasis on 3D problems and the scalability of the
method on distributed memory machines. Alternative multigrid methods which are
robust for anisotropic and discontinuous coeÆcients include algebraic multigrid [10],
black box multigrid [4], and multiple semicoarsened multigrid [9].

The rest of this paper is organized as follows. In section 2 we describe the semi-
coarsening multigrid algorithm. In section 3 we describe our parallel implementation
and develop a model for predicting its performance. In section 4 we present numeri-
cal results investigating the solver's algorithmic and implementation scalability. We
compare the implementation scalability of our solver to that of ParFlow multigrid [1]
and a simple matrix vector product. In Section 5, based on the model and numerical
experiments, we present some conclusions about the scalability of the solver.

2. SMG: semicoarsening multigrid. The semi-coarsening algorithm used is
based on the work by Scha�er [11] and we will briey discuss this particular multigrid
algorithm. To simplify the discussion, we focus on the 2D algorithm (commenting on
the 3D extension) and on those features that di�erentiate it from standard multigrid
methods. Let AU = F be the given linear system to solve, where the unknown U
and right-hand side F are vectors de�ned on a logically rectangular grid. We will
use an h superscript to denote quantities de�ned on the given grid. The matrix A
is symmetric, positive de�nite and connections have the standard \nearest-neighbor"
9-point stencil form. The multigrid algorithm of Scha�er uses a combination of semi-
coarsening, line-relaxation, and operator-based interpolation. The resulting algorithm
is eÆcient and robust with respect to anisotropic and widely variable coeÆcients in
the matrix A.

As the grid is logically rectangular, there is a unique index (i; j) for each point
on the grid, and the grid can be given a \red/black" line coloring. All unknowns
f(i; j); j oddg are considered \red" and will be used for the coarse grid. We will
use a 2h superscript to denote quantities de�ned on the coarse grid. This is called

2

semi-coarsening (as opposed to full or standard coarsening) as the coarse grid is only
coarser in one of the dimensions. Red/black line relaxation involves updating the
solution at all red lines to satisfy their equations (a tridiagonal solve for each red line)
followed by a similar update for the black lines. Because of the 9-point stencil, there
is no dependence between lines of the same color and they can be updated in parallel.

An important, unique feature of the SMG algorithm is the de�nition of the inter-
polation operator Ih2h used to transfer an error correction from the coarse to the �ne
grid. The de�nition is motivated by the relationship between error on red and black
lines after a black line relaxation sweep. To briey describe the approach, let

AJ;J�1UJ�1 +AJ;JUJ +AJ;J+1UJ+1 = FJ(4)

be the equations for the Jth line. Here UJ = (Ui;J ; i = 1; : : : ; nx) and similarly for
UJ�1. After relaxing this line, the error equation is

AJ;J�1eJ�1 +AJ;JeJ +AJ;J+1eJ+1 = 0;(5)

so

eJ = �A�1J;JAJ;J�1eJ�1 �A�1J;JAJ;J+1eJ+1:(6)

After black line relaxation this relationship describes how the error at black lines is
related to the error at red (coarse) lines; it gives the \ideal" interpolation formula.
However, using equation (6) leads to non sparse interpolation operators. In the SMG
algorithm, sparse approximations to these ideal interpolation operators are used. The
matrices �A�1J;JAJ;J�1 and �A

�1
J;JAJ;J+1 are approximated by diagonal matrices with

the same action on constant vectors. The computation of these interpolation operators
involves two tridiagonal solves for each black grid line.

With this de�nition for the interpolation operator Ih2h, its transpose is used for
the restriction operator I2hh (used in transferring residuals from the �ne to the coarse
grid), and the coarse grid versions of A are de�ned by the Galerkin condition, i.e.
A2h = I2hh AhIh2h. These components are computed in a setup phase and are then
used in a standard multigrid V-cycle as outlined below.

V (�1; �2)-cycle

1. Pre-relaxation on AhUh = F h. Perform �1 sweeps of red/black line relax-
ation.

2. Set F 2h = I2hh (F h �AhUh).
3. \Solve" A2hU2h = F 2h by recursion.
4. Correct Uh Uh + Ih2hU

2h.
5. Post-relaxation on AhUh = F h. Perform �2 sweeps of black/red line relax-

ation.

The equation to be solved in step 3 has the same form as the original grid h problem.
It is solved by applying the same algorithm using a still coarser grid 4h. Eventually, a
coarse grid is reached that has a single grid line and line relaxation is a direct solver.

The 3D algorithm is analogous to the 2D one presented above. Essentially \lines"
are replaced by \planes". The coarsening is done in only the z-direction, relaxation is
red/black plane relaxation, and the interpolation operator has the same action as the
\ideal" interpolation on functions constant in a plane. In the 3D algorithm all plane
solves are done approximately by one V-cycle of the 2D algorithm. Note also that

3

cyclic reduction, the method we use for the tridiagonal line solves, can be viewed as a
1D version of this algorithm. Essentially \lines" are replaced by \points". Here there
is no problem using the \ideal" interpolation operators, and a single V (1; 0)-cycle (or
V (0; 1)-cycle) with relaxation only performed at the black points is a direct method.

3. Parallel SMG. In implementing the SMG algorithm on a distributed mem-
ory computer, the simplest approach is domain partitioning. The �ne grid
h is
distributed among the available processors so that each processor q has a subgrid of
operation
h

q where
h = [
h
q and r 6= q)
h

r \

h
q = ;. The distribution of the �ne

grid naturally induces distributions on coarser grids, a coarse grid point \belongs" to
processor q i� the corresponding �ne grid point does. In the parallel algorithm, each
processor q executes those operations that result in changes at points on its subgrid.
Note that on coarser grids, some processors may go idle as they have no points left in
their subgrid. In this domain partitioning approach, there are steps in the algorithm
where data must be communicated. As a simple example, to calculate the residual
of the 3D problem at one of the points on the boundary of
h

q , processor q must
receive current values of the approximate solution U from its neighboring processors.
A more complicated example is in the relaxation of the 3D problem. The relaxation
is red/black plane relaxation and we have organized our code so that the planes of
the same color are solved simultaneously. In say the red plane solve, when communi-
cation is required between processors q and r, a single message is sent that contains
data on all red planes shared by the two processors rather than a single message for
each such plane. Similarly, a single message sent between two processors in line relax-
ation contains data on all lines being relaxed that are shared between them. In our
code, we have used this domain partitioning approach and used MPI [6] to handle the
communication.

There are reasons for using the domain partitioning approach to parallelizing
a multigrid algorithm other than its simplicity. Application codes often use this
approach and using it within the multigrid solver as well eliminates the need for data
redistribution. The domain partitioning approach can also yield very eÆcient parallel
multigrid solvers, for example, see [1]. Novel, parallel multigrid algorithms have been
proposed in the literature to break the sequential processing of grid levels; to reduce
communications within a standard V-cycle; and to create additional, useful work for
processors that would otherwise go idle on coarser grids. See [7] for a brief survey.
In our implementation, we have not made any algorithmic changes. The parallel and
serial codes produce identical numerical results.

In investigating the parallel performance of the SMG code, it is useful to con-
struct a simple model to see what performance should be expected. In the model we
will consider a 3D problem distributed among p3 processors so that each processor's
subgrid has size N3 and the total problem size, denoted by �N , is (pN)3. In the model
we assume a assume a V (1; 0)-cycle and consider only the relaxation process which is
the dominant operation in the algorithm. In the model we assume that the time to
access n doubles from non-local memory is

�+ �n;

and the time to perform a oating-point operation is f .
The model is somewhat complicated because of the recursive nature of the relax-

ation process: relaxing the 3D problem involves plane solves using the 2D algorithm
which it turn uses the 1D algorithm (cyclic reduction). We begin by looking at the
communication and computation involved in the 1D line solves, we assume the lines

4

are in the x-coordinate direction. Consider performing line relaxation where each
processor has a subgrid of size N � �yN � �zN; 0 < �y; �z � 1. At each level of the
cyclic reduction algorithm, a processor must relax its black points and pass solution
values to neighboring processors on each of two boundaries. The time can roughly be
modeled as

T 1Dlx (�y; �z) = 2�+ 2�y�zN
2� + �y�zN

22�lxNA1Dlx f;(7)

where lx is the level in the cyclic reduction algorithm (lx = 0 is �nest) and A1Dlx is
the stencil size. The �rst two terms are due to communication, and the last term to
computation. Summing over the number of 1D levels, Lx = log2 (pN), yields

T 1D(�y ; �z) = 2Lx�+ 2Lx�y�zN
2� + 6�y�zN

3f;(8)

where we have taken A1Dlx = 3 as the stencils within a line are 3-point. Now consider
the 2D plane solves which we assume are xy-planes. Consider performing plane solves
where each processor has a subgrid of size N�N��zN; 0 < �z � 1. In the relaxation
part of the 2D solve, a processor must calculate the right hand side for the line solves,
perform the line solves, and pass solution values to neighboring processors on each
of two boundaries. It must perform these operations in both the red and black line
relaxation steps. The time for 2D grid level ly can roughly be modeled as

T 2Dly (�z) = 4�+ 4�zN
2� + �zN

22�lyN(A2Dly �A1Dly)f + 2T 1D(2�ly�1; �z):(9)

where A2Dly is the 2D stencil size. The �rst two terms are due to communication, and
the last two to computation. Summing over the number of 2D levels yields

T 2D(�z) = 4Ly(Lx + 1)�+ 4�zN
2(Lx + Ly)� + 20�zN

3f;(10)

where we have taken A2Dly �A1Dly = 2 on the �nest 2D level (the 2D plane stencils are

5-point, the 1D stencils are 3-point), and A2Dly � A1Dly = 6 on coarser 2D levels (the

2D plane stencils are 9-point, the 1D stencils are 3-point). Now consider the full 3D
solves. Similar to the 2D case, the time for plane relaxation on 3D grid level lz can
roughly be modeled as

T 3Dlz = 4�+ 4N2� +N22�lzN(A3Dlz �A2Dlz)f + 2T 2D(2�lz�1):(11)

Summing over the number of 3D levels yields

T 3D = 4Lz(1 + 2Ly(Lx + 1))�+ 4N2(Lz + 2Lx + 2Ly)� + 48N3f:(12)

where we have taken A3Dlz � A2Dlz = 2 on the �nest 3D level (the 3D stencils are 7-

point, the 2D stencils are 5-point), and A3Dlz �A2Dlz = 10 on coarser 3D levels (the 3D
stencils are 15-point, the 2D stencils are 5-point).

Using equation (12), one can predict the scaled eÆciency of the algorithm. Fig-
ure 1 shows the predicted scaled eÆciency for various values of N . In these predictions
we used the following values for the model parameters

� = 230�sec; � = :16�sec=double; f = :074�sec=op:

These parameters are meant to model the initial delivery IBM SP ASCI Blue machine
on which the numerical results in the next section were obtained. The values for �

5

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors (Problem Size)

S
ca

le
d

E
ffi

ci
en

cy

o− 100x100x100

x− 75x75x75

+− 50x50x50

*− 25x25x25

Fig. 1. Scaled eÆciency as predicted by model: equation (12)

and � were obtained from data in [8]. The value for f reects the measured 13.5
Mop rate of the relaxation routine obtained on a single processor for a problem on
a 50� 50� 50 grid. The model suggests that the scaled eÆciency of the SMG solver
depends strongly on the problem size per processor. Like most solvers, eÆciency is
higher when problems are larger per node. The model suggests also that the SMG
solver is not scalable in the sense de�ned in equation (3). The number of communi-
cation events for the solver depends on the number of multigrid levels which in turn
depends logarithmically on the total problem size. As the total problem size and
number of processors grows, the �rst two terms in equation (12) cause the model's
scaled eÆciency to fall o�. As seen in the plots, the predicted drop o� in scaled
eÆciency is rapid for small numbers of processors after which the scaled eÆciency
almost levels out, although it does continue to degrade at an exceedingly slow rate.
In the limit as total problem size goes to in�nity, the predicted scaled eÆciency be-
haves like log�3(�N). A solver that performed as this model would be scalable for
all practical purposes; E(N;P) would be well bounded away from zero for all P one
would encounter in practice.

4. Results. As pointed out in the introduction, a scalable iterative solver re-
quires both algorithmic and implementation scalability. The focus of this section
is on implementation scalability, but we include one test of algorithmic scalability.
Consider the constant coeÆcient, potentially anisotropic PDE

auxx + buyy + cuzz = 0 in
 = (0; 1)3;(13)

u = 0 on @
;(14)

discretized using standard �nite di�erences on a uniform mesh, yielding a 7-point
stencil at each grid point. Taking a = 0:1; b = 1; c = 10 and a random initial guess,
we report in table 1 the number of SMG V(1,0) cycles required to reduce the l2 norm
of the residual ten orders of magnitude. The convergence histories for the various grid
sizes are plotted in �gure 2 with the lower line corresponding to the 40�40�40 grid and
the upper to the 240�240�240 grid. The number of cycles needed and the asymptotic
convergence factors are essentially independent of problem size. Each V (1; 0)-cycle
reduces the norm of the residual by roughly an order of magnitude even for the largest
problem which has over 13 million unknowns. The algorithmic scalability of the SMG

6

Problem Size 403 803 1203 1603 2003 2403

cycles 8 8 8 8 8 9
Table 1

SMG V-cycles for constant coeÆcient anisotropic problem.

0 2 4 6 8 10 12 14 16 18 20
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Number of V(1,0)−cycles

N
or

m
 o

f r
es

id
ua

l

Fig. 2. Convergence histories for constant coeÆcient anisotropic problem.

algorithm for harder problems involving anisotropic and discontinuous coeÆcients
has been demonstrated experimentally in the literature, for example, see [2]. In the
rest of this paper, we assume algorithmic scalability for SMG and investigate its
implementation scalability.

We investigate the implementation scalability of our SMG code on the initial
delivery IBM SP ASCI Blue machine at Lawrence Livermore National Laboratory.
For this study, a constant coeÆcient di�usion problem was discretized using �nite
di�erences yielding a 7-point stencil (except for problem 2, where a 27-point stencil
was used). The problems are de�ned by parameters for the size of each processors
subgrid (nx�ny �nz) and parameters for the processor topology (px� py � pz). For
example, in the �rst problem each processors subgrid is a cube (20 � 20 � 20, for
example) and px is the number of such subgrids in the x-direction, similarly for py
and pz. Thus the total problem size is (pxnx)� (pyny)� (pznz). In all tests, 5 V(1,0)
SMG cycles were performed. As timings on the machine tend to vary, the reported
results are the median of several such 5 cycle runs.

Problem 1 Three dimensional partitions with 7-point �ne grid operator.
In this problem the subgrids are cubes (nx = ny = nz = 20; 30; 40; 50) and the
processor topologies are 3 dimensional (px = py = pz = 1; 2; 3; 4). As a result,
processor boundaries cut each of the coordinate directions and message passing is
required in the 2D plane solves and the 1D line solves. These results thus correspond
to the model developed in the previous section. The timings and scaled eÆciencies are
reported in table 2 and the scaled eÆciencies are plotted in �gure 3. We see qualitative
agreement (and quantitative agreement to some degree) between the results and the
prediction of the model.

Problem 2 Three dimensional partitions with 27-point �ne grid operator.
This problem di�ers from problem 1 only in that the �ne grid operator has a 27-point
stencil. Thus there is slightly more computations involved and this results in slightly

7

Processor Topology Subgrid Size Time (sec.) Scaled EÆciency
1� 1� 1 20� 20� 20 0.741 1.000
2� 2� 2 20� 20� 20 2.881 0.257
3� 3� 3 20� 20� 20 3.484 0.213
4� 4� 4 20� 20� 20 5.762 0.129
1� 1� 1 30� 30� 30 1.580 1.000
2� 2� 2 30� 30� 30 4.271 0.370
3� 3� 3 30� 30� 30 6.476 0.244
4� 4� 4 30� 30� 30 8.085 0.195
1� 1� 1 40� 40� 40 3.583 1.000
2� 2� 2 40� 40� 40 7.928 0.452
3� 3� 3 40� 40� 40 9.134 0.392
4� 4� 4 40� 40� 40 12.756 0.281
1� 1� 1 50� 50� 50 6.620 1.000
2� 2� 2 50� 50� 50 12.209 0.542
3� 3� 3 50� 50� 50 16.187 0.409
4� 4� 4 50� 50� 50 18.781 0.352

Table 2

Problem 1 results, times are for 5 V(1,0) cycles.

higher scaled eÆciencies. However, qualitatively there is little di�erence between
these results and those for the 7-point operator. Compare the two plots in �gure 3.
Because we are primarily concerned with how the SMG implementation scales, and
this is most clearly seen in the plots, we have here omitted the table of timing results.
We omit them in all subsequent problems as well.

Problem 3 Two dimensional partitions with 7-point �ne grid operator.
In this problem the subgrids are again cubes (nx = ny = nz = 20; 30; 40; 50) but the
processor topologies are 2 dimensional (px = 1; py = pz = 1; 2; 4; 6; 8). As a result,
the processor boundaries do not cut the x-coordinate direction. Message passing is
still required in the 2D plane solves, but the 1D line solves are serial. The scaled
eÆciencies are plotted in �gure 4. Because there is less communication required, the
scaled eÆciencies are noticeably better than those in Problem 1.

Problem 4 One dimensional partitions with 7-point �ne grid operator.
In this problem the subgrids are again cubes (nx = ny = nz = 20; 30; 40; 50) but the
processor topologies are 1 dimensional (px = py = 1; pz = 1; 2; 4; 8; 16; 32; 64). As a
result, the processor boundaries only cut z-coordinate direction. Message passing is
not required in either the 2D plane solves or the 1D line solves. Both are serial. The
scaled eÆciencies are plotted in �gure 4. Again, because there is less communication
required, the scaled eÆciencies are noticeably better than those in Problem 3 and
very much better than those in Problem 1.

Problem 5 Comparison to other solvers on three dimensional partitions.
In this problem, we compare the eÆciencies obtained by SMG to those obtained in [8]
for a matrix vector product (MatVec) and the ParFlow linear solver. The ParFlow
solver [1] uses a multigrid preconditioned conjugate gradient method. The multigrid
preconditioner uses semicoarsening but point Jacobi relaxation as it was designed for
applications where the direction of anisotropy was constant throughout the domain.
It is generally not as robust as the SMG solver. For this problem the subgrids are

8

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors (Problem Size)

S
ca

le
d

E
ffi

ci
en

cy

o− 50x50x50

x− 40x40x40

+− 30x30x30

*− 20x20x20

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors (Problem Size)

S
ca

le
d

E
ffi

ci
en

cy

o− 50x50x50

x− 40x40x40

+− 30x30x30

*− 20x20x20

Fig. 3. Scaled eÆciency vs. problem size for three dimensional partitions. Problem 1: 7-point
�ne grid operator (left) and Problem 2: 27-point �ne grid operator (right)

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors (Problem Size)

S
ca

le
d

E
ffi

ci
en

cy

o− 50x50x50

x− 40x40x40

+− 30x30x30

*− 20x20x20

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors (Problem Size)

S
ca

le
d

E
ffi

ci
en

cy

o− 50x50x50

x− 40x40x40

+− 30x30x30

*− 20x20x20

Fig. 4. Scaled eÆciency vs. problem size for 7-point �ne grid operator. Problem 3: two
dimensional partitions (left) and Problem 4: one dimensional partitions. (right)

9

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors (Problem Size)

S
ca

le
d

E
ffi

ci
en

cy

o− MatVec

x− ParFlow

*− SMG

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors (Problem Size)

S
ca

le
d

E
ffi

ci
en

cy

o− MatVec

x− ParFlow

*− SMG

Fig. 5. Scaled eÆciency vs. problem size for 7-point �ne grid operator. Problem 5: three
dimensional partitions (left) and Problem 6: two dimensional partitions (right).

rectangular (nx = ny = 64; nz = 32) and the processor topologies are 3 dimensional
(1� 1� 1; 1� 1� 2; 1� 2� 2; 2� 2� 2; 2� 2� 4; 2� 4� 4; 4� 4� 4). The results
are plotted in �gure 5. For 64 processors scaled eÆciency of SMG (0.41) is sightly
worse than that for ParFlow (0.48), and this can be partially explained by the larger
communication requirements of SMG due to the plane and line solves in relaxation.
We should emphasize that comparing scaled eÆciencies of these di�erent methods
certainly does not tell you everything you want to know. For example, ParFlow
requires fewer computations per V cycle than SMG and achieves a higher Mop rate
on a single processor. Thus if the two methods have comparable convergence rates
for a given problem, ParFlow will solve the problem faster. Our point is that SMG is
a more robust solver and its implementation scalability is not greatly di�erent than
ParFlow's or the scalability of a simple MatVec (0.51 on 64 processors).

Problem 6 Comparison to other solvers on two dimensional partitions.
This problem di�ers from problem 5 only in the processor topologies. Here the pro-
cessor topologies are 2 dimensional (1� 1� 1; 1� 1� 2; 1� 2� 2; 1� 2� 4; 1� 4�
4; 1� 4� 8; 1� 8� 8). The results are plotted in �gure 5. SMG scaled eÆciencies
are higher than those in Problem 5 partially because the 1D line solves are serial.
However, this is likely not a complete explanation as the MatVec eÆciencies are also
higher in this case.

Note that in our timings we have not included the time taken in the setup phase
of the algorithm. The setup phase can be divided into two parts. The �rst part is
geometry dependent: coarse grid sizes are determined, memory is allocated, commu-
nication patterns are precomputed. If a subsequent linear solve uses the same size
grid and the operator has the same stencil pattern, this part need not be repeated.
The second part is coeÆcient dependent: interpolation and coarse grid operators are
computed. If a subsequent linear solve uses the same �ne grid operator, this part need
not be repeated. The work done in the coeÆcient dependent part of the setup phase
is comparable to a single V-cycle. The geometry dependent part of the setup phase
currently can take the time of several V-cycles, and we are working on optimizing
this. However, many applications we are interested in are time dependent. In implicit
time stepping codes where SMG is used to solve the arising linear system at each time
step, this geometry dependent part can often be done only once. Thus it constitutes
a small portion of the total run time.

10

5. Conclusions. Our real goal for the SMG code is to produce a robust, fast
solver for very large problems. In this study, we have focused on the scalability of
the solver as this seems to be very nearly a requirement for making e�ective use of
machines with thousands of processors. The results in this study, both the model
in Section 3 and the numerical experiments in Section 4, lead to several conclusions
about the SMG algorithm's performance on distributed memory machines. One is
not very surprising; the algorithm scales better when the problems are larger per
processor. The numerical results also suggest that the algorithm scales better when
the data is partitioned so that the 1D line solves are serial and better still when the
data is partitioned so that the 2D plane solves are serial as well. The conclusion
we would like to make is that the SMG solver is scalable in the sense de�ned in the
introduction: scaled eÆciencies are bounded away from zero with bound independent
of the number of processors. The model of Section 3 suggests that it might nearly be
so; the numerical results are somewhat less conclusive. The plots in Section 4 suggest
that the scaled eÆciencies may approach zero logarithmically as the model predicts
or even be bounded away from zero. Certainly the results using the largest problem
size per processor and partitions where the 2D plane solves are serial suggest that the
solver is scalable in this case.

REFERENCES

[1] S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conjugate gradient algo-
rithm for groundwater ow simulations. Nuclear Science and Engineering, 124(1):145{159,
September 1996. Also available as LLNL Technical Report UCRL-JC-122359.

[2] C. Baldwin, P. N. Brown, R. D. Falgout, J. Jones, and F. Graziani. Iterative linear solvers in
a 2d radiation-hydrodynamics code: methods and performance. Submitted to Journal of
Computational Physics, 1998.

[3] V.A. Bandy, J. E. Dendy, and W. H. Spangenberg. Some multigrid algorithms for elliptic
problems on data parallel machines. SIAM J. Sci. Stat. Comput., 19:74{86, 1998.

[4] J. E. Dendy. Black box multigrid. J. Comput. Phys., 48:366{386, 1982.
[5] J. E. Dendy, M. P. Ida, and J. M. Rutledge. A semicoarsening multigrid algorithm for SIMD

machines. SIAM J. Sci. Stat. Comput., 13:1460{1469, 1992.
[6] Message Passing Interface Forum, 1994. MPI: A message-passing interface standard. Int.

J. Supercomput. Applics., 8:159{416. http://www.mcs.anl.gov/mpi/mpi-report/mpi-
report.html.

[7] J. E. Jones and S. F. McCormick. Parallel multigrid methods. In Keyes, Sameh, and Venkatakr-
ishnan, editors, Parallel Numerical Algorithms, pages 203 { 224. Kluwer Academic, 1997.

[8] J. McCombs and S. Smith. Parallel performance of contaminate transport code on the IBM
SP/2. unpublished manuscript.

[9] N. Naik and J. Van Rosendale. The improved robustness of multigrid solvers based on multiple
semicoarsened grids. SIAM J. Num. Anal., 30:215{229, 1993.

[10] J. W. Ruge and K. St�uben. Algebraic multigrid (AMG). In S. F. McCormick, editor, Multigrid
Methods, volume 3 of Frontiers in Applied Mathematics, pages 73{130. SIAM, Philadelphia,
PA, 1987.

[11] S. Scha�er. A semi-coarsening multigrid method for elliptic partial di�erential equations with
highly discontinuous and anisotropic coeÆcients. SIAM J. Sci. Stat. Comput. to appear.

[12] R. A. Smith and A. Weiser. Semicoarsening multigrid on a hypercube. SIAM J. Sci. Stat.
Comput., 13:1314{1329, 1992.

11

